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To describe the motion of an avalanche we use “hydraulic” models, one ver- 

sion of which for a one-dimensional motion was proposed in [l]. An asymp- 
totic solution as t -+ 00 was constructed in p] for the equations proposed in 
[l] for the case of a slope of constant steepness with a uniform snow cover. 
Below we investigate the asymptotic behavior of the solution of a two-dimen- 
sional problem of the motion of a snow avalanche along a slope of varying 
steepness, on which snow with varying properties lies. It is assumed that the 
typical linear scale of variation of these quantities is sufficiently large. 

1. Statement of the problem. The equations of two-dimensional motion 

of a snow avalanche, analogous to those proposed in [l] for the one-dimensional case, 
are written in the form 

dh / dt -i_ h div v = 0 (1.1) 

dV 
- 

dt=-_ 3”1, grad (h2 cos $) + eg sin $ - F (u, h, x, y) v (1.2) 

Here u is the snow’s velocity averaged over the thickness, h is the thickness of the 
moving snow layer, -+ is the angle between the horizontal plane and the tangent plane 
to the slope at a point being considered, e is a vector lying in the tangent plane and 
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specifying the direction of steepest descent, F (u, h, T, y) v is the force of friction 

referred to unit mass, t is the time, 5, y are certain coordinates on the slope’s surface, 
and the operations div and grad are taken on the slope’s surface. An expression for 
the force of friction was used in [l, 21, which can be written as 

(1.3) 

Here p is the coefficient of ‘*dry” friction, k is the coefficient of hydraulic friction. 
Equations (1.1). (1.2) apply only in the region where the snow moves. We shall assume 

that the relations 
h (w, - v,,) = how, (1.4) 

ph~w~v = l/~pgh2 cos $m - o*h 

analogous to those used in [l, 21 and expressing the conservation of mass and momentum, 
are fulfilled at the leading front of the avalanche, i, e. at the boundary of the snow at 

rest and in motion. Here w ,is the velocity of motion of the front (along the normal), 
v,, is the velocity of the snow behind the front, p is the density of the moving snow, 

which we assume to equal the density of the snow lying ahead of the avaloanche. o* is 
the critical stress at which the structure of the moving snow breaks down. 

The surface of discontinuity described by relations (1.4) we shall call the break-down 

front. We assume that at thebreak-down front 

Q* = cs*n (1. 5) 
Then the second equation in (1.4) yields 

p&w, &I = ‘/s pgh2 cm 9 - o*ho, V, = 0 

Under natural assumptions on the snow’s properties and on its break-down process, the 
relation 

a*h, > ‘12 p&j? co5 II, (1.6) 

should be fulfilled; the equality holds only when the snow ahead of the front behaves 

like a liquid. Surfaces of discontinuity can be formed also within the avalanche as it 
moves. We assume that the very same conditions as at hydraulic discontinuities 

h+ (w,z. - G) = h- (wn - ~1-1 (1.7) 

h+ (ton - uni) u,+ - h- (Wn - u,-) ?I,- = 

g (~-~),*s~ UT + zzz u,- 

are fulfilled on these surfaces. Here the minus and plus indices denote, as usual, that the 

corresponding quantity is taken ahead of or behind the surface of discontinuity. 
By L* we denote the distance at which the quantities characterizing the properties 

of the slope and of the snow cover change by a substantial part of their own magnitude. 
By L and ?’ we denote the typical scale and the characteristic time of variation of 
the solution, where, as usual, we can assume that T = L, / v*, and where U* is the typi- 
cal velocity of the avalanche. It is obvious that L < A*, The ratio of the left-hand 

side of Eq. (1.2) to the force of friction is of the order of the quantity U* / FL, while 
the ratio of the first term on the right-hand side to the force of friction is of the order 
of hg cos 9 / Fv* L. The differential terms in Eq. (1.2) can be neglected for suffi- 
ciently large values of L, namely, for 
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(1. f-3) 

The equations obrained in this manner are said to be simplified. They describe the 

large-scale motions. 
When F (v, h, x, y) is expressed by formula (1.3) the condition under which we can 

neglect the differential terms can be written as 

(1.9) 

where h* is the typical depth of the snow in the avalanche, equal in order of magnitude 
to the initial depth of the snow. The neglecting of the differential terms in Eq.(l. 2) 
when constructing the asymptotic solution had been done earlier in l?2] for the study of 
snow motion and in [3] for the study of the motions of a liquid layer. 

The use of a simplified system to describe the motion on long smoothly varying slopes 

is feasible under the condition that the motion with slowly varying parameters is stable, 
because otherwise there can appear probations with a characteristic linear size not 
satisfying condition (1.8). however, if we are interested not in the fine-scale perturba- 

tions but only in the average characteristics of the motion, then (as is done in the study 

of turbulent motions) we can use the same Eqs. (1. l), (1.3) with another force of 
friction Fs depending on average v and h. Obviously, condition (1.8) is fulfilled for 

such an average motion along a slope with large L” , We shall assume that condition 

(1.8) is fulfilled over a sufficiently large time after the start of the motion almost over 
the whole region occupied by the moving avalanche, except for a narrow region directly 

abutting the leading front of the avalanche (the break-down front) and, possibly, certain 

narrow regions within the avalanche. From the large-scale point of view these narrow 

regions of rapid variations of parameters of the moving snow can be replaced by surfaces 

of dis~ntinuity, 

2, General rolutlon of the rimpliflcrd ryltsm, Solving Eq, (1.2)with 
the differential terms discarded relative to v, we have 

v = V (h, x, y) e (2.1) 

Thus, the velocity is directed along the line of steepest descent. Therefore, the solution 

for the whole slope can be obtained by dividing it up into narrow strips by lines of steep- 
est descent and by examining the motion inside each strip. 

Farther on, by x we denote the distance along some strip and by s (z) the width of 

this strip. Then from Eqs. (I. 1) and (2.1) we obtain 

(2.2) 

The equations for the characteristics of this equation have the form 

CJX 
a mv (k 41 

dt = dh (2.31 

rlh ----zzz 
dt 

--h g+v+y 
i 

If we take expression (1.3) for the force of friction in the moving avalanche, then rela- 
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tion (2.1) , connecting the velocity and the depth of the snow, and Eqs. (2.3) are written, 
respectively, as 

f(z) = l/g(sin+--pcos%)/k 

In this case Eqs. (2.3) can be integrated and yield 

Here C, x0, t, are consrants along the characteristic. Using the initial and boundary 
conditions we can eliminate C, x0, E, from relations (2.4) and obtain the solution in 

the form h = h (x, t), u = f ‘I/ h = u (x, t). 
In particular, the region of initial perturbation, from which the avalanche develops, 

can in many cases be taken as small from the large-scale point of view and can be re- 
placed within each strip between two lines of steepest descent by a point (x,, = 0, 

t, = 0) above which the snow remains unmoving. A beam of characteristics (a rare- 

faction wave) emanates from that point. If 5’ (h) +- hdV I dh > 0 for all /z > 0, 
then along the last characteristic the condition h = 0 should be given. The distribu- 

tion of h and v in the rarefaction wave issuing from one point, obtained by (2.4). has 
the form 

cp (x) = (Sf)-‘/J% $ dx 

8. Boundary conditions for the rfmplifisd ryttem. Condition8 
an the surface of diseo~tinuity. When ~~tructing the large-scale solution 
the boundary conditions are the conditions on the narrow boundary zones of abrupt vari- 

ation of the parameters of the moving snow or on the surfaces of discontinuity replacing 
these zones. One of the conditions on the surface of discontinuity is the condition of 

conservation of mass, which follows from (1. l), (1.4), (1. ‘I), (2.1) and can be written as 

w = [hV (h) - h,V @,)I / (h - h,) (3.1) 

w = h V (h) / (h - h,) (3.2) 

for the internal discontinuities and for the discontinuity which simulates the narrow zone 

abutting the leading front of the avalanche (the break-down front), respectively. Here w 

is the velocity of the discontinuity along the line of steepest descent, w = w, i eos 0, 
8 is the angle between the normal to the surface of discontinuity and the direction of 
steepest descent, h and h, are the snow depths behind and ahead of the discontinuity, 

respectively. Conditions (3.1) and (3.2) are found in correspondence with Eq. (2.2) 
which also expresses the conservation of mass. 

If we draw a graph of the function hV (h) (Fig. l), then expressions (3.1) and (3.2) for 
the velocity w of the discontinuity can be treated as tangent of the slope angle of the 
secant which, in the first case, passes through the point with coordinates h,, h,V (h,) 
and, in the second case, passes through the point with coordinates h,; 0. According to 

(2.3) the propagation rate of characteristics of the large-scale motion equals the tangent 
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of the slope angle of the tangent to the graph of hV (h). We shall assume that this 
quantity is a monotonically increasing function of h. Then, the graph of the function 

hlr (h) is convex downwards as shown in Fig. 1. 
From Fig. 1 we see that if h > h,, the inequality 

a (h,) < w < a(h), a (h) = d,‘dh [h V(h)] (3.3) 

is fulfilled for the internal discontin~ties and equality can hold only for h = 12,. To 
each ir, > he corresponds a value w (h), where w (h) is a monotoni~lly increasing 
function. As will follow from what we say later on, solutions representing their structure 
do not correspond to discontinuities with h < h,,! Therefore, we do not consider such 
discontinuities. Furthermore, when h < h, the signs of the inequalities in (3.3) are 

reversed, and if we do not lay down (three) additional conditions, such a discontinuity 
does not evolve [4]. On Fig. 1 we mark the point G at which the ray drawn from point 

h,, 0 is tangent to the curve hTr (h). We see that 

WC;==w(hc)=a(hc),w>wwc 

20 -=Cn (h), h > kc; 

w>a.(h), h<ht, 

(3.4) 

Note that if (3.2) is the only condition on a surface of discontinuity, then the leading 
front is a nonevolving discontinuity for h ( hG. However, for certain cases we can find 

an additional condition which should be laid down for h < hc, If from the assumption 
it turns out that a (h) is a monotonic function, then internal discontinuities are possible 

with a decrease in h. 
Let us consider the motion in a narrow zone corresponding to a discontinuity of the 

large-scale solution. The parameters of the slope inside this zone can be taken to be 
constant, and the motion assumed uniform and in steady state in the system of coordi- 
nates 5, 9, moving together with the leading front with velocity w, = w cos 8. In 

this case Eqs. (1. I). (1.2) become 

h(wn-u)=Q (3.5) 

(U - w,,) $ + g cos II, -$ = g sin $ cm ?I - F ( Jfu2 + v2, h) u 

(u - w,) dv/dE =I g sir1 $ sin B - F ( I/u2 + 9, h) u 

Here u, zt are the projections of the absolute velocity onto the g-axis directed along 

the normal to the leading front downward with respect to the motion and the tf -axis 
directed along the tangent, respectively, Q is the snow’s mass flow divided by its den- 
sity. In the zone abutting the break-down front, Q = hewn; in the zone correspond- 
ing to an internal discontinuity, Q = h,, (w, - u,). 

Eliminating h with the aid of the first equation in (3.5). we obtain a system of two 
equations for u (E) and 2) (g), The solution u (g), v (E), representing the avalanche’s 
leading front, should start at the break-down front and end at one of the singular points 
of this system. where du / dg = 0, dv / dc = 0. The structure of the internal dis- 
continuity represents the transition from one singular point to the other. The velocity 
componets corresponding to the singular points of system (3.5) are determined by the 
relations 
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The corresponding equation for determining the quantity h at the singular points can 

obviously be written in the form (3.1) or (3.2). The investigation carried out above 

with the aid of relations (3,X) and (3.2) shows that if a fh) is a monotonically increas- 
ing function of h, then (de~nding on the magnitude of W) there exist no more than 

two singular points of system (3.5) (points A and B in Fig. 2). and 

ff. &B) 4 w < f2 @A) (3.6) 

On the ( u, D )-plane we mark the “critical” straight line (* ) 

u, = u. =w,- CI‘ - ?Qgoos 9 

on which w, - ti = vgh cos 6. Under a monotonic variation in E it is impossible 
to pass through this line continuously, because as we pass through it the derivative of u 

with respect to E generally changes sign. A passage through the critical straight line is 
possible only by the jump (1.43, (1.5) or (X,7) which always occurs with an increase in 
u and h [Z]. The type of the singular points A and B can be found directly from 

Eqs. (3.5) or by means of the theorem proved in f53. 
It is known [S] that if the motion with constant parameters satisfying both, the com- 

plete as well as the simplified systems, is stable (which we assume), then the character- 
istics of the simplified system cannot overtake those of the complete system. Therefore, 

the inequality 
u+ l/ghcos$l >acose (3.7) 

is fulfilled at the singular points. From [2] it follows that for a force of friction given 

by equality (1.33, inequality (3.7) is equivalent to the inequality tg 9 - p < 4 k I 
COST 8. From (3.6) and (3.7) we see that the singular point A always lies to the right 
of the critical straight line ZL = u,, and is a node or a focus with integral curves enter- 
ing into it as E -9 - 00 (see Fig.2). The type of the singular point B depends upon its 
position relative to the straight line g =I a,, , If it lies to the left of this straight line, 
i.e. if 

w, > UB + V%ri cos 9 (3.8) 

then point B is a node or a focus with entering integral curves; however, if A and B 

are located to one side of the straight line u = acr , i, e. if inequality (3-B) is of 
opposite sign, then point B is a saddle. For internal discontinuities there always exists 
a solution of the complete system, starting at point B and ending at point A, describ- 
ing their structure, When inequality (3. 8) is fulfilled, this solution starts with a jump 

determined by conditions (1.7). but is continuous when inequality (3.8) has the opposite 

sign. 
Let us now consider in more detail the structure of the avalanche’s leading front. The 

corresponding solution of system (3.5) starts at the break-down front and ends at point 
n or at point 3. In the Brst case we say that the leading front is of type 4, while in 
the second, of type B. From relations (I,@, (1.5) we see that immediately behind the 

*) Editor’s Note. Were and in the sequel the subscript ” cr ‘* denotes “critical”. 
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break-down front the point (u, U) lies on the a-axis (point C on Fig. 2), and under 
condition (1.6) we always have 

WI% -C @c + &$ccos$, UC > UC, (3.9) 

If UB < lie.. then by virtue of (3.9) the desired solution is depicted by an integral 

curve going into point A. The transition to point B would be accompanied by a pas- 
sage through the critical straight lines with a decrease in 11 and h, which is impossible. 
Let point R be a saddle. We consider the integral curve entering into point B. On this 

integral curve there can exist a point (point D on Fig. 2) at which ZJ = 0. If there is 

no such point, then the solution describing the structure of the discontinuity being exam- 
ined can terminate only at the point A. If point D exists, then for UC: > no the solu- 

tion ends at point d, for uC < no the solution representing the structure of the ava- 

lanche’s leading front does not exist, and for UC - uo the solution ends at point B. 
The condition 

UC = un (3.10) 

is an additional condition which should be fulfilled at discontinuities of type B. The 
quantities UC and ~11 can be expressed in terms of the i?ont’s velocity w and of the 
parameters of the slope and the snow. Therefore, condition (3.10) can be looked upon 

as an equation for w. Its solution, if it exists, can be written as a function of the snow 
and slope parameters at the spot the front is located and of the quantity 6 characteriz- 

ing the front’s angle of inclination to the line of steepest descent 

w = w* (*,*,., 6) (3.11) 

The problem of finding relation (3.11) in explicit form, including the determination 

of integral curve 1111, can be solved, it seems, only by numerical methods. In general, 
the function UP need not be single-valued. From the region of admissible values of u:, 
which is defined by the inequality ZL‘ > u.~, the values of ZL’+ delineate segments such 

that to the values of ~2‘ belonging to these segments there does not correspond a solution 

representing the leading front’s structure. To values of ZL> not belonging to these seg- 

ments there correspond fronts of type A, while to the endpoints of the segments, fronts 
of type B. In those cases when there is no point I) or when Eq. (3.10) is not fulfilled 

for any values of ~1’ whatsoever, all values 11: > 211(; correspond to discontinuities of type 
A. 

When the force of friction is given by equality (1.3), for 6 = 0 the difference u~--u~) 
is a monotoni~lly increasing function of zc’. If the monotony of the dependency of 
tl(. -- 1’1~ on TV is preserved in some region of values of 6, then no more than one value 
of I/.* exists. If such a value does not exist, then the discontinuity is of type A for all 
U’ > U‘(;. However, if IL)* exists, then to values u<. u:* there do not correspond discon- 

tinuities possessing a structure, to the value 1~’ = u.* there corresponds a discontinuity of 

type B, and to values w > UZ*, a discontinuity of type A. Here, the obvious inequality 
a.* > wc is satisfied in the region wherein discontinuities of type f$ are possible, in the 
space of the variables characterizing the state of the snow and slope and the direction 

of the shock wave, and the boubdary of this region is given by the equality 

I<.* = MC (3.12) 

The condition for the existence of waves of type /3 has been found in explicit form @] 
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o*< p&l I- ( tg*---P 
k 

) 
cos ql 

and the function w* has been investigated qualitatively, for the case when 6 = 0 and 
the force of friction is determined by formula (1.3). 

In this paper we assume that the magnitude of 6 is not large in those cases when we 

require an explicit expression for w *_ From symmetry it follows that the dependency 

of w*on 5 is even; therefore, by expanding the function w* in a power series in 62 and 
restricting ourselves to two terms, we obtain , 

w* = w. + K(y (3.13) 

4. Splitting up of dftcontlnuitfe8. It is important to note the following 

fact. When w > w* the integral curve representing the structure of discontinuity arrives 
at point A. When w = w* this integral curve turns into the integral curves DB and 

BA, the first of which represents the structure of a discontinuity of type B, while the 

second, the structure of an internal discontinuity. Thus, a discontinuity of type A splits 
up into a discontinuity of type B and an internal discontinuity moving with the same 

velocity when w = w*. It seems that the splitting up of discontinuities is a rather typ- 
ical behavior of discontinuities in continuum mechanics (for example, see [7, 81). 

To illustrate the process of splitting of a discontinuity we consider the “piston” prob- 
lem for Eq. (2.2). We assume that the motion of the snow on a slope with constant para- 

meters is supported from behind by the motion of a piston on which we are given h = 

hp = const ( l ). For large hp the solution is represented by a discontinuity of type A 
and by a flow with homogeneous parameters following behind it. With a decrease in hp 

the velocity w of the discontinuity drops in correspondence with (3.2), and if the slope 
is such that the discontinuities of type B can exist, then for some hp = h, (TV*) corre- 

sponding to w = w* the solution has the same form but, as follows from the investigation 
of the structure, the surface of discontinuity is two discontinuities : a leading front of 

type B and an internal discontinuity, one moving behind the other with the same velo- 
city. Under a further decrease in hp the wave of type B retains its velocity, equal to 
w*, while the velocity of the internal discontinuity decreases in amplitude with it. When 

hp = h (w*) the amplitude of the internal discontinuity vanishes and under a further 
decrease in h, a rarefaction wave appears in the solution. Finally, when h, = 0 the 

solution acquires the form found in [Z]. 

6. Motion of the rvrlrnche when itr larding front in a dlrcon- 
tinuity of type A. If a discontinuity is of type A, the velocity w of its motion 
along a line of steepest descent depends, according to (2.1), on the value of h immedi- 
ately behind the discontinuity, which in its own turn is determined by integrating the 
Eqs. (2.3) of the characteristics along the line of steepest descent. Thus, in this case, the 

motion of the leading front is determined along each line independently of the rest. The 
form of the leading front ov the avalanche can be found by joining the points specifying 
the position of the discontinuity on each line of steepest descent. 

When the h behind the discontinuity is greater than ho, the characteristics catch up 

*) Note. The subscript ” p " stands for “piston”. 
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with the discontinuity (Fig. 3) and its velocity is determined by h. If the value of h 
yielded by characteristics at the d~scontinllity decreases and becomes equal toho (at point c 

in Fig. 3), then the velocity of the discontinuity becomes equal to the velocity of the 
characteristic, If along a characteristic running in the immediate vicinity of the shock 
wave the quantity h d hc continues, after becoming zero, to decrease by virtue of Eqs. 

(2.3) and of the giving of ho (x), then this characteristic lags behind the discontinuity. 

In fact, according to (3.3) the velocity of the discontinuity cannot be less than that of 
the characteristic computed from the magnitude ho. In this case, as long as 

(5.1) 

the condition 1~’ = “o, analogous to the Jouguet condition, is satisfied at the discontinu- 
ity. On the (2 , t )-plane the characteristics (2.31, touching~ leave the surface of discon- 
tinuity, If the-sign in inequality (5.1) is replaced by the opposite one (point D in Fig. 
3), then the characteristics, which not long before this lagged behind the shock wave, 

begin to catch up with it, bringing along with them the values of h greater than ho. 
There is no difficulty in writing out the first-order ordinary differential equation des- 

cribing the motion of the avalanche’s leading front on segments BC and D F. When 
studying the motion of the avalanche and of its leading front we must keep in mind the 
possibility of the formation of jumps within the avalanche. 

6. Motion of ditcontinuitics under the porribility of a split, 
We first consider the case 8 = 0. Let the initial data be such that a discontinuity of 

type A is realized for small t (Fig. 4). If during the advance of the discontin~ty its 
velocity becomes equal to w*, then the discontin~ty splits up into a dis~ont~n~ty of 

type B and an internal discontinuity. The velocity w * of motion of a discontinuity of 

type Lj is determined solely by the properties of the slope and of the snow at the point 

where it is located, The characteristics emanating from the discontinuity determine 

the flow of snow in the zone adjacent to the discontinuity and, also, affect the motion 
of the internal discontinuity, A discontinuity of type B can turn once again into a disc 

continuity of type n if the slope becomes such that a wave of type B cannot exist on 
it or if it catches up with an internal dis~ntin~ty whose velocity is determined by its 

height and is greater than the velocity of the characteristic (Fig. 4). 
Let us now consider the motion of the avalanche’s leading front when it is represented 

by a discontinuity of type B with 6 + 0. We introduce a curvilinear coordinate sys- 

tern with coordinate lines x directed along the Iines of steepest descent and with coor- 
dinate lines y orthogonal to them. Let the length of the vector {&, dy ) be expressed 

by the equality 
ds2 = g12 (x, y) dx” + g22 (x, y) dy2 

We specify the law of motion of the discontinuity by the equation x = x’ (y, t)s 
Then the velocity w of the discontinuity and the tangent 6 of the inclination to the 
line of steepest descent are expressed as follows 
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Substituting these expressions into equality (3.13) which expresses the velocity of 
motion of the discontinuity, we obtain a first-order partial differential equation in X 

(6.3) 

The dependence of w* on x and y is the result of the dependence of q7 o*, F, gi, 
$2 on x and y. In (6.3) we have taken into account that w is an even function of s. 
The characteristics of Eq. (6.3) are inclined to the lines of steepest descent and that 
implies the possibility of the motion transferring from some lines of steepest descent to 

others not initialIy taken up by motion of the avalanche. 

For simplicity let us consider the motion of a front of type B on a uniform slope. 

Then w* does not depend on x and y explicitly, while the dependency on 6 is of form 
(3.13). We first find the form of the leading front of the avalanche, arising from a point 
probation at the origin. Writing the equations of the characteristics for Eq. (6,3), we 
find 

(6.4) 

Integrating these equations and eliminating aX / ay, we obtain the equation for the 
front 

X 1 ?P 
t = U’0 - 4k’ ta 

Thus, the form of the avalanche’s leading front developing from a point perturbation 
represents a parabola expanding in all directions pro~~ionally with time. For K > 0 
the parabola is reverse with its vertex downward relative to the slope. The width of the 

avalanche is inversely proportional to V’E. 
We now consider the behavior of the perturbation of the front’s form which for t = 0 

is represented by the straight line X = ay everywhere except for a certain segment of 

a curve in the neighborhood of the point 2 = 0, y = 0. For definiteness we consider 
the case K > 0 (the case K < 0 is investigated analogously). Let the perturbation 

of the front be a convexity facing downward (Fig. 5). On the perturbation there is a 
point at which aX / 8~ = cc. The normal comonent at this point of the characteristic’s 
velocity coincides with the tiont’s velocity and, therefore, this element of the front 

moves at a constant distance ahead of the main front. The ‘J -axis component of the 

characteristic’s velocity, corresponding to this element, is directed to the left if a < 0 
and to the right if a > 0. The remaining characteristics corresponding to the pertur- 
bation diverge from this characteristic to different sides so that the perturbation propa- 
gates. After the lapse of a sufficiently large time the ~rt~bation of the front repre- 
sents a part of the parabola 

x =- w”t + c - 4Xt 0% 6) 
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(C is the amplitude of the initial perturbation) which lies below the straight line 

x = ay + (w* + Kcc)t (6.7) 

representing the remaining part of the front. There is a discontinui~ in the derivative 
3X / ay at the place where the parabola (6.6) intersects the straight line (6.7). For 

large t the width of the perturbation grows as u’z. 
When the perturbation represents a concavity in the front, the characteristics corre- 

sponding to the different point of the perturbation converge (Fig. 6). Where they inter- 

sect a discontinuity is formed in the derivative dX / 8~. The characteristics correspond- 
ing to the middle part of the initial perturbation terminate on the discontinuity. There- 
fore, the ~~~bation’s amplitude tends to zero with increasing time. 
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